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Editorial note. This paper and the next paper by Yu. K. Zhbanov and V. E Zhuravlev are concerned with the following 
theorems due to I. I. Metelitsyn (1952): 

Theorem 1. If a conservative system is statically unstable, the system cannot be made stable by adding strictly 
non-conservative forces (without dissipative and gyroscopic forces). 

Theorem 2. If a conservative system is statically stable, the addition of strictly non-conservative forces (without 
dissipative and gyroscopic forces) can make the system unstable. 

Theorem 3. A strictly non-conservative system (V = 0) can be made stable only if gyroscopic and dissipative forces 
are simultaneously added to the active forces. 

Theorem 4. A statically unstable system can be made stable if dissipative, gyroscopic and strictly non-conservative 
forces are simultaneously added to the forces applied. 

Theorem 5. If the condition of stability TE2-TDE c D’Vis satisfied and gyroscopic forces predominate over the 
others, then the vibration frequencies of the system diverge, i.e. some of them become extremely small, while others 
become extremely large. 

Theorem 6. If the stability condition is satisfied and gyroscopic forces predominate, then more intense damping 
compared with that of slow vibrations corresponds to vibrations with higher frequencies. 

Theorem 7. If, among the roots of the characteristic equation, there are real roots, then stability of motion is 
only possible when the potential energy is a positive-definite quadratic form. 

Here, T corresponds to the kinetic energy, D to dissipative forces, r to gyroscopic forces, V to potential forces 
and E to non-conservative positional forces. 

Up to the 192Os, systems containing potential, dissipative and gyroscopic forces were considered in mechanics, 
although the existence of non-conservative positional forces had been known for a long time. In 1928, Nikolai appears 
to have been the first to establish that a following force acting on a bent elastic rod can be split into potential and 
non-conservative positional forces [l]. This caused great interest, and many papers appeared (their number increased 
sharply with the development of jet propulsion technology) in which systems acted upon by potential, dissipative 
and non-conservative positional forces were considered (see, for example, [2]). 

In 1952, Metelitsyn [3] examined in general form a system containing all existing linear forces, namely: potential, 
dissipative, gyroscopic and non-conservative positional. A concise version of his paper is contained in [4]; it is 
included without change in [.5]. The general formulation of the problem aroused considerable interest, which is 
largely to Metelitsyn’s credit. 

To investigate his system, Metelitsyn used a method that was known as far back as the second half of the nineteenth 
century [6]. This method had been used to investigate systems containing only potential and dissipative forces .- 
Metelitsyn extended its range of application. 

The editors of Metelitsyn’s collected papers [5] remarked at the very start of the paper in question that 
Metelitsyn “by stability always means potential stability, and by a static unstable system he means a system for 
which the potential energy has a maximum at the equilibrium position” - these remarks will be taken into account 
below. 

There are at present different opinions concerning Metelitsyn’s work. His supporters continue to publish papers 
based on his work without scrutinizing the special features of his method. It is therefore useful to explain Metelitsyn’s 
theorems and the method he used in detail. 

Metelitsyn examines a system whose motion is described by linear homogeneous second-order differential 
equations with constant coefficients. 

(1) 

where c(~, = u,~ are the coefficients of inertia that occur in the kinetic energy of the system, &,ci, are dissipative 
forces (fix, = &.), y&, are gyroscopic forces (ye, = -y,,~), &,y, are potentiai;forces (Si, = s&G E~,~~I, ari non- 
conservative positional forces (Ed< = -E,k). Note that the latter forces have different names (Metelitsyn calls them 
strictly no~z-consewativeforres). Here, all the notation of [5] is retained. 
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For greater clarity, using a linear orthogonal transformation we will reduce Eqs (1) to normal coordinates, 
where, when there are no forces apart from potential forces, these equations take the form ijk + Skqk = 0. As a 
result, instead of Eqs (l), we obtain the equivalent equations (without loss of generality, the former notation is 
retained) 

~(ii,+P,g,+y,q,+S~q~+e,q,)=O, k=l,...,n 

As usual, Metelitsyn seeks a solution in the form 

qs = A/” (3) 

After substitution, equations are obtained for determining the numbers A, and p 

i[u2 +(pks +yks)u+gL +ekr]As =O, k=l,...,n (4) 
s=l 

detll~2+(~~s+Y~s)CL+~~+~~II=0 (5) 

Metelitsyn then assumes that the characteristic equation (5) has complex conjugate roots u and p’, each of which 
has its own system of complex conjugate constant+ and&. Then, each equation of (4) is multiplied by& and, 
after addition, the quadratic equation 

7).12 +(D+iT)p+V+iE=O (6) 

is obtained, where T, D, r, Vand E are the sums and differences of quadratic forms in which, instead of variables, 
there are parameters which depend ultimately on the complex conjugate roots u and p’. The number T is always 
positive; for resistance forces with complete dissipation, D > 0. The quantities r and E can have any sign and are 
equal to zero. Note that Metelitsyn always refers to T, . . . , E as “quantities”. In their construction, these quantities 
depend on the coefficients of Eq. (2) the numbers A, and Ai and the roots p and p’. The coordinates q and their 
time derivatives 4 do not occur in the quantities T, . . . , E. 

Assuming that the resistance forces have complete dissipation, Metehtsyn obtained the inequality 

TE2 - I-DE < D2V (7) 

from the condition that the real part of the roots of Eq. (6) is negative. Metelitsyn calls inequality (7) “the condition 
of [asymptotic] stability of non-conservative systems”. 

Here, several general remarks must be made: 
1. Taking into account that each pair of roots has its own system of quantities T, . . . , E (Metelitsyn himself 

mentions this [S, p. 401, it is necessary to require that inequality (7) be satisfied for all pairs of roots; this inequality 
is identical in form for all pairs of roots. 

2. The quantity V = Ca,A,A; corresponds to the potential forces. If, for several but not all roots of Eq. (5), the 
values of Vare, for example, positive, then this does not mean that the potential energy H = 1/2l&q~ as a quadratic 
form of the coordinates will have a minimum at the equilibrium position. 

3. Without solving Eq. (5) it is impossible to determine the numbers A, and Ai and, consequently, impossible 
to determine the quantities T, . . , E, and without these it is impossible to verify condition (7). In Theorems 5 and 
6, Metelitsyn considers this condition to be satisfied. How this was checked is unknown. 

4. Metelitsyn considered not only asymptotic stability. In Theorems 1 and 2 the stability of systems when there 
are no dissipative forces is spoken of. Under these conditions, only simple stability is possible. 

We will now consider Metehtsyn’s theorems. 

Theorem 1. Metelitsyn’s proof is as follows: “in fact, if D = 0 and I? = 0, then the condition TE2 < 0 cannot be 
satisfied”. 

In deriving inequality (7) Metelitsyn assumes that D > 0; here he assumes that D = 0. 
We will now take into account the second remark of the editors. Suppose that, when a conservative system is 

unstable, the potential energy has a maximum. Then, in Eq. (5) and 8, < 0, and when & = 0 and yh = 0 the 
coefficient of ube2 will be equal to ZS, < 0, which demonstrates the impossibility of the system being stabilized 
by any non-conservative positional forces. Thus, Theorem 1, with the reservation given by the editors, becomes 
correct, but its proof bears no relation to Metelitsyn’s method and does not stem from it. 

It is now necessary to examine this theorem from the point of view of stability theory, according to which, with 
time, Lagrangian motion is considered to be unstable if just one coordinate increases without limit. We will show, 
for example, that in this case Theorem 1 is incorrect. In fact, a system whose motion is described by the equations 

4, +6q, +Eq2 =o, ij2 -92 -&q, =o 



when E = 0 is an unstable potential system. We will now assume that E = \ 10. The characteristic equation will 
have pure imaginary roots: k2i and ki. This demonstrates that an unstable potential system can be stabilized by 
some non-conservative positional forces. The stability achieved, of course, is simple, since, without dissipative forces, 
asymptotic stability is unachievable - a fact that has long been known. 

Theorem 2. Metelitsyn gives no proof, and no proof follows from inequality (7). This assumption does not look 
like a theorem, since the formulation enables the opposite assumption to be made, namely: the addition ofnon- 
conservativepositionalforces is unable to disrupt the stability of a potential system. The correctness of both assertions 
can easily be shown using examples. In any case, it follows from this theorem that Metelitsyn did not only consider 
asymptotic stability, since without dissipative forces only simple stability is possible. 

Theorem 3. If, in this and in the following three theorems, Metelitsyn’s assumption that inequality (7) is correct 
is accepted, then in Theorem 3 the condition the determinant of strictly non-conservative forces must be non-zero, 
does not suffice. This addition follows directly from Eq. (5), since under the conditions of the theorem the free 
term of this equation is equal to the determinant det ]] Ed (I. This determinant is skew-symmetric and consequently 
the case of old n is ruled out straight away; however, for even n 3 4 this determmant may be equal to zero. 

Theorem 4. It is assumed, as the editors of [5] write, that the potential energy has a maximum at the position 
of unstable equilibrium. Under these conditions, the theorem is correct only for even n, since for odd n the free 
term of the characteristic equation (5) will be negative. This addition is not present in Metelitsyn’s case. The complete 
proof can be found in 171. 

Theorem 5. The assertion that, when gyroscopic forces predominate, the vibration frequencies diverge is correct 
but the proof is incorrect. In fact, as follows from the proof of this theorem, by gyroscopic predominance Metelitsyn 
means the case when I + {T, D, V, E}, but even before this theorem (see [5, p. 41) m a similar case he writes that 
this condition is necessary but insufficient, “since I can equal zero”. Consequently, this condition is insufficient 
to prove Theorem 5. Furthermore, Metelitsyn took no account of the fact that the frequencies are determined 
from characteristic equation (5) and for the frequencies to diverge it is necessary for the determinant G = det ]]yks I] 
to be zero (see [7], where the necessary and sufficient conditions for the frequencies to diverge are stipulated and 
where there is a reference to an earlier publication). 

Theorem 6. The remarks concerning Theorem 5 also apply to Theorem 6. 

Theorem 7. Metelitsyn’s proof: “in fact, in this case I = 0 and E = 0, and therefore condition (11) [inequality 
(7) here] reduces to the form V > 0”. Note that Metelitsyn correctly shows ([5: p. 401) that, for a real roof of Eq. 
(5) I I 0 and E = 0. 

In this theorem Metelitsyn forgot that he always called T, . . . , E quantities which depend in a complex manner 
on the roots p and u’, and he called Va quadratic form which depends on the coordinates. The consequences of 
this forgetfulness will be demonstrated by an example. 

Suppose the equations of motion of the system have the form 

41 + 3,034, - q1 + 242 + J542 = 0 

-24, -&q, +& +1.97&+q2 =0 

All forces are acting on the system, and the characteristic equation has the roots (with an accuracy to 1%) 

Pi =-1, l.l? = -2, /.l3,4=-lfi 

Two positive values of V correspond to the two real roots, but according to Remark 2 this is insufficient for the 
potential energy, as a function of the coordinates, to have a minimum at the equilibrium position. In fact, the system 
is asymptotically stable and has two positive values of V, and its potential energy, equal to II = (qi - qf)/2, contradicts 
Theorem 7. 

We will return to inequality (7). Metelitsyn writes that this inequality “. . expresses the condition of [asymptotic] 
stability of non-conservative systems”. 

All the quantities in inequality (7) can be determined only after the roots of the characteristic equation 
of the initial differential equations have been found, and here, for each root. its own inequality (7) should 
exist. 

For simplicity we will take a system of two equations containing all forces, 

;il +P,4, +%q, +Yi2 +w2 =o 

-0rj,+Eq,)+9'2 +P202+&4; =o 

Assuming, as usual, that q, = A&“, after substitution and cancellation of eP’ we obtain 

(8) 
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(p* +P,P+G,)A, +(w+O42 =O 

-(yp++)A, +(P* +P2~+82M2 =O 

(9) 

Following Metelitsyn, let us assume that 

A, = MS + N,i. s= I.2 (10) 

We substitute these equalities into system (9) and then multiply the first equation by M, - Nli, and the second 
equation by Mz - N2i. Adding the expressions obtained, we obtain Eq. (6), in which 

T=x(M;+N;), D=~&(Mk’+N;), V=zti,(&+N,2) 

I- = 2y(M, N2 - M2 N, ). E=2&t4,N2-M2N,) 

Equalities (10) and (11) correspond to Eqs (6) and (8) in Metelitsyn’s paper [5] when n = 2. 
If the characteristic equation is set up for system (8) 

(11) 

4~) = 
P2 +hc(+& w+e =o 

-(yp + E) P2 +P*v+82 

then the constants A, will be equal to the cofactors AiS of the determinant A(p) (see [S]). In the present case 

A, =p* +p2p+6*. A2 =-yj.t+~ 

Assuming that p = a + oi and taking equalities (10) into account, we obtain 

MI =a2 -a* +fi2a+6*, N, =w(2a+p2), M2 =ya+~. N2 =r.oy (12) 

Let us consider an example. When 

p, =6-p*=5.8185891. 6, =h=-I/*. y=l1/3, &= 9l4 (13) 

system (8) contains all forces, has complete dissipation and is asymptotically stable - the roots of the characteristic 
equation are as follows: 

PI.2 = -I fOSi, p3.4 = -2fo.5i 

(All calculations were carried out to eight significant figures, with rounding up of the final result.) 
Consider the first two roots ur2, for which 

a=-I, 0=m.5 

Using equalities (12) and (13), we find Ml, N1, M2 and N2, and then, from formulae (ll), we obtain 

(14) 

T = 6.2000, D = 5.8121, v=-3.1000. I- = S8.5244, E = S5.2309 

(the upper signs correspond to the upper sign of w in (14) and the lower signs to the lower sign of w). 
Now, after elementary calculations, inequality (7) takes the form 

169.6 - 259.2 c -I 04.7 

which for the roots pi2 contradicts Metelitsyn’s assertion. 
Repeating all the transformations for the roots u3,4, we obtain the inequality 

16237-48194<-115860 

which again contradicts Metelitsyn’s assertion. 
This example (which, of course, is not the only one) shows that Metelitsyn was wrong - inequality (7) cannot 

be used as a criterion of asymptotic stability of the system of initial differential equations (1). This inequality serves 
as the condition for the real parts of the roots of quadratic equation (6) to be negative. The fact that the coefficients 
of this equation were obtained from the roots of Eq. (5) proves nothing, since the latter were assumed to be only 
complex-conjugate roots. 
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